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A new method for treating supersonic flow 
past nearly plane wings 

By MYRNA LEWIN* A N D  ROBERT A. SCHMELTZERT 
North American Aviation, Los Angeles Division, Los Angeles, California 

(Received 21 May 1963) 

Function-theoretic techniques are used for determining the supersonic flow past 
a wing of infinite length having a straight leading edge. The problem is reduced 
to a set of dual integral equations which are solved by function-theoretic methods. 
This approach is shown to be useful for treating more general-type leading edges 
yielding closed-form solutions which heretofore have been unobtainable. The 
general solutions obtained here are shown to be in complete agreement with 
previous solutions for the flow at large distances downstream on the aerofoil. 
For a wing of infinite span, the solution reduces to the well-known perturbation 
potential for a distribution of sources in a horizontal plane. 

1. Introduction 
The linearized theory for supersonic flow past an aerofoil of zero aspect ratio 

was considered by Stewartson (1950) and later by Lomax, Heaslet & Fuller 
(1951). The former obtained the asymptotic value of the perturbation potential 
on a plane wing for large distances downstream. I n  the latter paper, the authors 
reduced the problem to a set of Volterra integral equations of the second kind for 
the loading coefficient on the centre-line of the wing. The solution of these equa- 
tions can be determined by numerical processes. Gunn (1947) showed that this 
problem can be reduced to a set of dual integral equations by operational tech- 
niques. He did not pursue this method further, however, since he believed that 
its direct solution was unobtainable. 

I n  the present paper, we obtain a general solution for the perturbation 
potential for supersonic flow over a nearly planar wing of infinite length having 
either a purely supersonic leading edge or a partially supersonic and partially 
subsonic leading edge. By the use of function-theoretic techniques, we show that 
the dual integral equations mentioned above are, indeed, solvable and lead to 
a closed-form solution for the perturbation potential. 

It is shown that for large distances downstream on the aerofoil the solution 
for the perturbation potential agrees with an approximate solution obtained by 
Stewartson (1950). It is further demonstrated that as the span of the aerofoil 
becomes infinite, the potential function reduces to the well-known potential 
solution due to a distribution of sources in a semi-infinite horizontal plane. 
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2. Mathematical formulation of the dual integral equations 
In  the analysis which follows, it is assumed that the flow is inviscid and 

isentropic. The perturbation of a uniform high-speed flow caused by a thin wing 
of infinite length and finite span is assumed so small that the squares and higher 
powers of the perturbation velocity components and their derivatives can be 
neglected in the equations of motion of the fluid and in the boundary con- 
ditions. A linear partial differential equation is thus obtained for the first-order 
perturbation velocity potential. 

The wing is situated in a right-handed Cartesian co-ordinate system with the 
direction of the supersonic stream taken along the positive y-axis. The wing 
has a semi-span b along the x-axis with its centre-line along the y-axis. The mean 
surface of the wing is denoted by S and lies in the z = 0 plane, y > 0, 1x1 < b. 
The remaining surface of the z = 0 plane is denoted by R. 

Let U denote the velocity of the undisturbed free stream and let M denote 
the Mach number. The perturbation potential $ satisfies the partial differential 
equation governing the first-order perturbation velocity 

The perturbation potential may be considered as the superposition of two 
independent solutions, viz. the symmetrical and the anti-symmetrical parts. 
Each of these is considered separately. The symmetrical problem corresponds 
to a wing having a small, but finite thickness and set at a zero angle of incidence 
with the free stream. The anti-symmetrical problem corresponds to a wing of 
infinitesimal thickness and may possess a non-zero lifting force. Since the wing 
is taken as infinite in length and parallel to the free-stream direction, it has no 
trailing vortex. The wing is assumed to have a straight leading edge along the 
x-axis, 1x1 < b. A more general-type leading edge is treated subsequently. 

Set $ = $1 + $z,  where $1 is the symmetric and $2 the antisymmetric function 
with respect to the z = 0 plane, i.e. 

(2) 

The derivative of $l(x,y,z) normal to the x = 0 plane is continuous on R and 
discontinuous on the wing surface 8. The boundary conditions which must be 
satisfied by dl(x, y, z )  on the surface z = O+ are 

I y7 ’) = t(#(x, y, + #cx, y7 -’)> 
and # Z ( x 7  y9 ’) = i { $ ( x 7  y7 - $(x7 y7 

a$,iaz = o on R, ( 3 b )  
(3  4 q51 is continuous everywhere in z 2 O+. 

The boundary conditions which $z(x, y, z )  must satisfy are 

3 4 2  a$ 
ax az z+o- a2 

2-- = lim - (x, y, z )  - lim - (x, y, z )  on S ,  

q52 = 0 on R, ( 4 b )  
( 4 c )  is continuous everywhere in z 2 Of. 
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a$/az(x, y, z )  is proportional to the slope of the aerofoil for z + ? 0 and is pre- 
scribed on S. 

satisfying (1) and the boundary con- 
ditions (3), has been treated by Puckett (1946) and Ward (1955). The solution 
to this problem is given by 

The symmetrical potential function 

dy’dx‘ 
Q1(x, y, 2) = -~ ~ (x‘, y’, O + )  (55) P aZ’ {(y-y’)2-a2(x-x’)2-a222)9’ 

where the integration is taken over that portion of the z = 0 plane for which 

y‘ < y - a{+ -x’)Z+ 2 2 ) k  (6) 

The antisymmetric problem can be solved employing operational methods. 
For this purpose we introduce the Laplace transform of 42 

Since the perturbation functions q52(x, 0, z ) ,  aq52/i3y(x, 0, z )  are zero, the partial 
differential equation satisfied by q52, 

is transformed as 

The transformed boundary conditions (4) are 

-- a@, (x, p ,  0 )  = /om e - p u g  ” ( x , y, 0) dy, 0 < 1x1 < b (prescribed), az 

e - P U $ , ( x ,  y, 0)dy = 0 ,  b 6 1x1 < 00. 

Set 

where 
4&, Y, 4 = 4e@, Y, z )  + 4o(x, Y, 4, 

4&, Y, z )  = 8{42(x, Y 7 2) + 4 2 (  - 2, Y , 41, 
4o(x, Y, 4 = +{42(x, Y? 4 - 4 2 (  -2, Y, 41. 

(10) 

(11 )  

Denote the Laplace transform of $&, y, z )  and q50(x, y, z )  by Qe and Qo, respec- 
tively. Assume solutions for Qe and Qo of the form 

where ae(q, p )  and ao(q, p )  are to be found. It is easily verified that (12) formally 
satisfies (8). Both the even and odd characteristics of Qe(x, p ,  z )  and Qo(x,  p ,  z ) ,  
respectively, are preserved in (12). The functions a&, p )  and a&, p )  are deter- 
mined from the transformed boundary conditions (9). We assume that differ- 

20-2 
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entiation under the integral sign is valid. These boundary conditions may then 
be expressed as two sets of dual integral equations 

a,(q, p )  cos (aq4 (q2 + P2)+ dq  (0 < x < b),. a@, 
~ (x, p ,  0 )  = -a  

a Z  

0 = IOmae(q, p )  cos (aqx) dq (b < x < co); 

---(x,p,O) = - a  ax ao(q,p)sin(aqx)(q2+p2)*dq (0 < x < b ) ;  
Crn 

J 0 = J ~- u,(q, p )  sin (aqx) dq (b < x < a). 
0 

The functions a@&, p ,  O)/az  and i3O0(x7 p ,  0)la.z are known in the interval 
0 < x < b and may be expressed in terms of a@,,/az(x, p ,  0 ) .  

3. Solution of the dual integral equations 
The dual integral equations 

1 a@ 
a aZ som p )  cos (aqx) (q2 +p2)h dq = - -2 (x, p ,  0) (0 < x < b) ,  

r m  

J J ae(q, P) cos ( a ~ )  dq = 0 (b  < x < 001, 
0 

can be solved using function-theoretic methods, i.e. by reducing the above 
equations to a set of functional equations between analytic functions. 

By a simple change of variables, (15) can be written as 

IOmrA(r)cos(r t )dr  = g(t)  (0 < t < l), (16a,) 

x = tb, s = abp. J 
Assuming continuity of the integrands in (16) with respect to r and t and uniform 
convergence of these integrals with respect to t ,  one may integrate the set of 
dual integral equations with respect to t 

It is assumed that A may be written as the sine transform of a function 23, i.e. 
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Equation (19)  satisfies (18a)  provided 

rt 
B(t )  = g(x)dz  (0 < t < 1). Jo 

This is a direct consequence of substituting (19) into (18a) .  If (19)  is substituted 
into (18b)  an integral equation is obtained for B(t) 

A/mB(t){Eo(s l t-zl)-Ko(s It+xl)}dt = G(x)  (1  < x < oo), (21) 
n 1  

where G(x)  is known and is given by 

G(x)  = -- B(t){Ko(s l t - ~ l ) - K ~ ( s  l t+zl)dt  (0  < z < a). ( 2 2 )  : ib’ 
Introduce a sectionally holomorphic function F (  W ) ,  having a jump discon- 
tinuity on the real axis, 1 < 1x1 < oo 

F( W )  = &Ilm B(t) {Ko[s(t - W ) ]  - KO[+ + W)])dt.  (23) 

It is necessary that B(t) -+ 0 as t + 00 for the existence of the integral (19). 
This condition is sufficient to determine the asymptotic behaviour of (23). In 
fact, for t > R, IB(t)I < 1, 

+ I1<o[S(t- W)]-Ko[s(t+ W)] l .  (24) 

Consider R as a large but fixed arbitrary constant. Then the asymptotic 
behaviour of F( W ) ,  as given by (24), is determined from the behaviour of KO( W ) .  
As W -+ 00, KO( W )  = O( W-3 exp Ws). Hence for W sufficiently large 

F ( W )  = O(W-*expsW)+O(W-*exp -8“). (25) 

Set F (  W )  = Fl( W )  exp ( - s W )  + F2( W )  exp ( + s W).  (26) 

Fl(W) and F2(W) must be O(W-*) as W + co for (25) to be satisfied. F ( W )  as 
defined in (23) is an even function of W which imposes the further condition 

(37) Fl( W )  = F2( - W ) .  

A functional relationship can now be obtained between F,+(x) and F y ( x ) ,  the 
values of Fl( W )  for W + x + i0 and W -+ x - i0, respectively. 

This functional relationship is obtained by letting W approach the real axis 
alternatively through positive and negative imaginary values 

+[F+(x) +F-(z)] = + [ F t  ( x )  + F ,  (z)] e-xs + &[FF ( - X) + Fi ( - x)] exs 

= a’($) (1  < x < CO); (28 a )  

i[F+(x)-F-(x)]  = i [ F , + ( x ) - F y ( x ) ] e - ~ ~ + ~ [ F , f (  - x ) - F y (  - ~ ) ] e + ~ ~  

= 0 (0  < x < 1). (28b)  
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Equation (22) implies that as x -+ 00, G’(x) N x-4 e-sx. Thus in order that the 
functional equation (28) be valid, it  is sufficient that 

(29) 1 &[Ft  (z) + F ,  (x)] = e+xs G‘(x) (1 < x < a), 

Flf(x)+F,(z) = 0 (-a < x < - l ) ,  

Flf(X)-FF(X) = 0 ( - l < x < + l ) .  

(29) defines a Riemann-Hilbert problem for three disconnected arcs situated 
along the real axis. This problem is to find a sectionally holomorphic function 
Fl( W )  behaving as W-4 at infinity and satisfying the boundary conditions stated 
in (29). The solution to this problem has been treated extensively in the literature 
(Muskhelishvili 1946) and thus will be stated rather than derived 

Hence 

The solution of the Riemann-Hilbert problem given by (31) assures continuity 
of the potential function Qe at x = b. Since F (  W )  is known, we can write 

1 
ba lorn a&, p )  cos qxdq = +[F+(x) + F-(x)] -- 77 G‘(x) 

= abQe(x, p ,  0) (0 < x < b).  (32) 

.a@., 
0 az 

where GA(t) = [K,(ap It-r/)-K,(ap I t+r l ) ] I  -(x,p,O)dxdr. (34) 
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and 

i 
H ( x )  = 1 (x > O), 

= 4 (z = O), 

= 0 (z < 0). 
(37) 

Since the potential function $&x, y, 0) is specified on the plane z = 0, the 
general solution $&x, y, z )  can be obtained from Hadamard's (1923) solution of 
the partial differential equation ( I ) ,  

where the integration is taken over the plane z = 0 

y' < y - a{(. - z')2 + ;"*. (39) 

The bars through the integral signs in (38) denote the finite part of this improper 
integral. 

The potential function Qo(z, p ,  0) is obtained in a similar manner 

(43) 

The function #o(z, y, z )  can be expressed in terms of Hadamard's solution of the 
partial differential equation ( 1 )  

a 
(b0(z', y', 0) [(y - y')2 - ayx - x')2 - a2221-t dy'dx', (44) n 

where the integration is taken over the z = 0 plane 

y' < y-a{(x-x')2-az2}k 

Equations ( 1  l ) ,  (38) and (44) enable us to write $Jx,  y, z )  explicitly in terms of 
$o(x, Y, z (  and $e(x, Y, 2) 

x - a [(y-y')2-a2(x--')2-a222]-~dy'dx'. (45) 
az 
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4. Asymptotic behaviour of $2(x, y ,  0 )  for large distances downstream 
In  this section we compute the asymptotic behaviour of $(x, y ,  0) for large 

distances downstream on the aerofoil for the special case of a plane wing of 
rectangular planform having a semi-span b and at an angle of incidence ,8 with 
the free stream. This particular case was considered by Stewartson (1950) who 
assumed an approximate expansion for @(x, p ,  0) of the form 

m 

p q x ,  p ,  0 )  = a&) (1 -x2/b2)n+: 
n = O  

for small values of p, and he determined the first few coefficients an(p) .  We shall 
now show that our exact solution reduces to the first term of the expansion (46 )  
for p = 0 which represents the asymptotic behaviour of $(x, y ,  0) as y approaches 
infinity, i .e. 

lim $(x, y ,  0) = lim p@(x ,  p ,  0). 
Il'W P-tO 

(47 )  

For the special case of a wing of rectangular planform and at an angle /3 with 
the direction of the free stream, $,,(x, y,z) and $l(x, y , x )  are identically zero, 
and therefore 

The mean surface of the wing is, to a first approximation, in the plane z = 0. 
The equation of its surface is 1x1 < b, y > 0. The boundary conditions in the 

( 4 9 a )  
z = 0 plane are Q = 0 and aq5jay = 0 for y 6 0, 

Q = 0 on z = 0 for 1x1 < b, (49b)  

(49c )  

The Laplace transform of aq5laz with respect to y on the mean surface of the wing 
is 

The boundary conditions (49) for $(x, y,x) also apply to $e(x ,  y , x )  from con- 
dition (48) .  

(48) $(x7 Y ,  0 )  = $ e ( X ,  Y, 0). 

&$/ax = - UP on the mean surface of the wing, 1x1 < b, y > 0. 

(50 )  p i3@/&(~ ,  p ,  0 )  = - U p  (1x1 < b) .  

Substituting (50) into (33) and using (47), it can be shown that 

dtdr.  (51) 

Interchanging the orders of integration of the t and r integrals and evaluating 
the resulting integral, one obtains 

lim $(x, y, 0) = - PU - (b2 - x2)& ( 5 2 )  
U--tW 7r 

For 1x1 < b ,  $(x, y, 0) as defined by the right-hand side of ( 5 2 )  can be evaluated as 

(53) 

which is in agreement with the potential function obtained by Stewartson (1950). 

lim $(x, y ,  0) = PU(b2 - x2)*, 
y-m 
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5. Potential function for wings of infinite span (b  = co) 

perturbation potentials Qe and Q,,, given by (35) and (42), reduce to 
1 t - m  V - ~ ( ~ - Z , ) % - &  a 

As the span of the wing approaches infinity ( b  -+ co), the equations for the 

2% ( X I ,  yI, 0) 
7r --m az 

x [(y - y’)2 - a2(x - x‘)2 - a2221-4 dy‘dx’, (54) 
s 1 0  

$ e ( ~ 7  Y, 2 )  = - - 

Therefore x [(y-y’)2-a2(x-xf)2-a2z2]-~dy’dx’. ( 5 6 )  

1 +a 2/-a{(s-s’)Z-z+ 

77 -02 az 
35 ( X I ,  y’, 0) 

x [(y - Y ’ ) ~  - a2(x  - x ’ ) ~  - a2z2]-k dy‘dx‘. (66) 

+2(x,y,n_) as given by (56) represents the perturbation potential at  the point 
( x ,  y, x )  due to a distribution of sources in a semi-infinite plane. 

s 1 0  
Q2(x, Y, 2) = - - 

6. Extension to more general type leading edges 
The above results may be extended to wings of infinite length having partly 

supersonic and subsonic leadings edges with sides parallel to the free-stream 
direction. The well-known procedure for finding the normal velocity a#/az in 
the vicinity of the leading edge is to transform the Hadamard integral equation 

dy‘dx‘ 
H[y - y’ - a \(x- % ’ ) I ]  

0’2’ -’=O [(y-y’)2-a2(%-% ’ ) 2-;E ] 
$(x,y,o) = !J/””I -~---___-__ 

77 

to  characteristic co-ordinates in the x = 0 plane (see Ward 1955), by setting 

5 = y-ax, 9 = $/+ax, 
<‘ = y‘ - ax‘, 9’ = y‘ +ax‘. (58) 

Similarly, the equation of the leading edge is expressed in terms of these charac- 
teristic co-ordinates. Betting Q = 0 before the aerofoil, one may obtain a simple 
Abel integral equation (Ward 1955) of the first kind for a#/& off the aerofoil in 
terms of a$/& on the aerofoil. Once knowing aQlax before the aerofoil, we have 
reduced the problem to a wing having a straight leading edge which is infinite 
in length, and the results of the previous sections are applicable. 
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